PURDUE UNIVERSITY. FORT WAYNE Civil and Me Engineering

Department of Civil and Mechanical

Course	ME 56200 – Advanced Dynamics
Type of Course	Required for MSE-ME concentration
Catalog Description	Kinematics of paths and particle motion; kinetics of particles, rigid bodies and multi-body systems; momentum and energy methods; linearized equations for mechanical systems; Lagrangian formulation for mechanics of mechanical systems; holonomic and non-holonomic constraints; Lagrange's equations; Hamilton's principle for holonomic systems; classification and stability of vibratory systems; applications to vehicle dynamics, orbital motion, robotics.
Credits	3
Contact Hours	3
Prerequisite Courses	ME 36100, Graduate standing
Corequisite Courses	None
Prerequisites by Topics	Differential Equations and Linear Algebra
Textbook	D. T. Greenwood, Classical Dynamics, Prentice-Hall, current edition
Course Objectives	To provide a comprehensive understanding of the principles of dynamics of rigid bodies and multi-body systems, and to develop an ability to analyze such systems.
Course Outcomes	 Students who successfully complete this course will be able to analyze kinematics and kinetics of a particle and a system of particles through understanding of (1, 7): Generalized coordinates Holonomic and nonholonomic constraints D'Alembert Principle Hamilton's Principle Lagrange Equations Dynamic Stability
Lecture Topics	 Kinematics of paths and particle motion Kinetics of particles, rigid bodies and multi-body systems Momentum and energy methods

	 Linearized equations for mechanical systems Lagrangian formulation for mechanics of mechanical systems Holonomic and non-holonomic constraints Hamilton's principle for holonomic systems Stability of dynamic systems
Computer Usage	Low
Laboratory Experience	None
Design Experience	None
Coordinator	Bongsu Kang, Ph.D.
Date	27 March 2018